
All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 11

CMSC 426

Principles of Computer Security

Lecture 04

Stack Overflow Attacks



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 2

Last Class We Covered

 Memory allocation in programs

 Assembly language review

 Registers

 PUSH, POP, CALL, RET

 cdecl

 Code example

 Vulnerable code

 Finding and avoiding



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 3

Any Questions from Last Time?



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 4

Today’s Topics

 Stack Overflow Example

 Code

 Example Run

 Exploit Code Example

 Exploit Input

 Shellcode

 Return addresses

 NOP sleds



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 5

Stack Overflow Example



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 6

Stack Overflow Example Code

 Relevant code snippet:
int main()

{

char first[5];

char name[15];

printf("Please enter a name: ");

gets(name);

printf("\nfirst: %s\n", first);

printf("You entered the name %s\n", name);

return 0;

}



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 7

Stack Overflow Example Run
linuxserver1[7]% ./a.out

Please enter a name: Gibson

first:

You entered the name Gibson

linuxserver1[8]% ./a.out

Please enter a name: Dr. Katherine L. Gibson

first: . Gibson

You entered the name Dr. Katherine L. Gibson



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 8

Stack Overflow Example Compile
linuxserver1[13]% gcc overflow.c

overflow.c: In function ‘main’:

overflow.c:16:3: warning: implicit declaration of function ‘gets’; 

did you mean ‘fgets’? [-Wimplicit-function-declaration]

gets(name);

^~~~

fgets

/tmp/ccncipQo.o: In function `main':

overflow.c:(.text+0x3e): warning: the `gets' function is dangerous 

and should not be used.

They really don’t want 
anyone using fgets()

… I wonder why?



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 9

Overflowing the Stack Buffer

 Requires the use of a lower-level language (like C) that will 

allow the use of unsafe functions and methods

 Like strcpy() or gets()

 End goal is to use the overflow to overwrite important things

 Return addresses

 Function parameters

 “Normal” memory with code supplied by the attacker



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 10

Another Stack Overflow Example Run
linuxserver1[15]% ./a.out

Please enter a name: Dr. Katherine Gibson is teaching this course with a very long 

title - CMSC 426: Principles of Computer Security

first: ibson is teaching this course with a very long title - CMSC 426: Principles of 

Computer Security

You entered the name Dr. Katherine Gibson is teaching this course with a very long 

title - CMSC 426: Principles of Computer Security

Segmentation fault (core dumped)



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 11

Segmentation Faults

 Happens when memory is written to that should not be

 Or when memory is accessed that should not be

 Not 100% consistent – sometimes C/C++ will let you 

“get away” with accessing or writing to memory that 

doesn’t “belong” to you/the program

 The more you mess up, the more likely it will be caught

 Overflow attack input shouldn’t be much longer than is needed



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 12

Exploiting Stack Overflows



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 13

Overflow Exploit Source Code (part 1)

 Simple main() for 

calling a function with an 

overflow exploit in it

int main(int argc, char *argv[]) {

if (argc != 2){

printf("Invalid number of arguments\n");

exit(1);

}

bof(argv[1]);

printf("Completed\n");

return 0;

}



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 14

Overflow Exploit Source Code (part 2)

 What are we trying to 

exploit with this code?

 Using the unsafe function 
strcpy

 If str is longer than

buff, this will cause an 

overflow

int bof(char *str)

{

char buff[512];

strcpy(buff, str);

printf("The length of your ", 

"string is %d\n", 

strlen(buff));

return 0;

}



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 15

Visualizing the Stack

 What will the stack look like 
once the bof() function has 

been called?

 What part of this is 

most vulnerable?

 What part is going 

to be exploited?

main’s Stack Frame

str (parameter)

EIP (return address)

EBP (main’s)

buff



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 16

Overwriting Return Addresses

 Want to control where the program “returns” 

to after a function is completed

 If we can force it to return to somewhere in memory where 

malicious code exists, then it will execute that code instead

 Accomplish this by overwriting the actual return address 

with one of our own making, that directs to the malicious code



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 17

Shellcode

 The malicious code that we want to be run

 In our example, will be causing a shell to open

 (This is why it’s typically called shellcode)

 Ideally, with root privileges

 Will let us be a “super user”

 Remove and edit files, view all files and directories, 

make changes to permissions of other files

 (We’ll discuss how to accomplish this next time)



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 18

NOP Sleds

 Can be tricky to jump exactly to the start of the shellcode

 “NOP” means “no operation”

 When the program sees a NOP, it moves on to the next 

instruction

 Create a sequence of NOPs

 Jumping anywhere inside it will allow you 

to “sled” to your actual shellcode



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 19

Quick Note: Word Alignment

 Having things on the stack align along word boundaries is 

automatically done (important to everything running smoothly)

 Words are four bytes (32 bits)

 But this is not the case when we’re editing the contents 

of the stack by causing a buffer overflow

 Having the new return address in our overflow input 

line up with the original return address needs to be managed

 We must control our shellcode and NOP sled sizes to ensure that the 

final return address (and anything else) will be correctly aligned



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 20

Example 

Stack Buffer Overflow Exploit



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 21

Overflow Exploit Goal

 In this example, the goal is privilege escalation

 Gaining privileges you didn’t have before

 Note that the vulnerable executable has the SUID bit set

 SUID  “Set User ID upon execution”

 Linux will run this program with the user ID and 

permissions of its owner (in this case, root)



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 22

Stack Smashing

 The bof function tried to return to 0x41414141 

(an invalid address) and caused a segfault

 0x41 is ‘A’ in ASCII

Starting program: /home/rj/demo/vulnerable AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAA

The length of your string is 726

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

What happened here?



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 23

Visualizing the Stack “Post Screaming”

main’s Stack Frame

str (parameter)

EIP (return address)

EBP (main’s)

buff

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAA

Where the return 
address was stored
was overwritten by 

4 “A” characters



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 24

Creating the Exploit

 We can control the address that the bof function returns to if 

we pass it specially crafted input

 (Instead of screaming at it)

 The construction of the 

input will be in this form:

 [NOP SLED][shellcode][return addresses]

 And since the stack “writes” up, it will 

look like this on the stack itself

 Sizes are approximately to scale

return addresses

shellcode

NOP sled



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 25

Shellcode

 Instructions with the purpose of opening a shell

 In this example, a root shell

 It can’t contain any NULL characters

 1) It’s being passed in as command line input

 2) strcpy will go until it sees a NULL character

 It’s often limited to a very small size

 We have 512 bytes in this case, 

but we’ll still keep the shellcode short



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 26

Return Addresses

 We need to figure out where the return address of bof is 

located on the stack in order to overwrite it with our own

 It’s a bit higher on the stack than the local variables

 We could do the math…

 Or we can just include a bunch of copies of our return address 

in our exploit and hope one overwrites it

 Always word aligned (so no “partial” overwrite)



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 27

Return Addresses

 We also need to decide what the value of our return address 

should be 

 We want to jump to our shellcode, so that it’s executed as though it’s 

the intended code to return to

 Needs to be an absolute address

 (We’ll use gdb to do this, covered in detail later)

 We may not get the exact address of our shellcode 

using gdb, but we can estimate it

 Estimating will be enough, because…



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 28

NOP Sled

 Fill a large area of memory with NOP instructions before the 

shellcode

 “Below” it on the stack, 

in the lower addresses

 If our estimate of where to “return” to points to anywhere 

in the NOP sled, we’ll end up executing the shellcode



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 29

Putting it All Together

 The address returned to when bof() exits is overwritten 

 The function instead returns to 

somewhere in the NOP sled

 The NOP sled leads execution

to the start of the shellcode

 The shellcode executes and we 

get a root shell

return addresses

shellcode

NOP sled





All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 30

Writing the Exploit (Shellcode)

 Will explain how this works in detail next time



All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 31

Daily Security Tidbit

 Canadian passports have a neat security feature

 Can see more examples at

 https://imgur.com/gallery/3u8xP


